Welcome to DU! The truly grassroots left-of-center political community where regular people, not algorithms, drive the discussions and set the standards. Join the community: Create a free account Support DU (and get rid of ads!): Become a Star Member Latest Breaking News Editorials & Other Articles General Discussion The DU Lounge All Forums Issue Forums Culture Forums Alliance Forums Region Forums Support Forums Help & Search

Environment & Energy

Showing Original Post only (View all)

enough

(13,719 posts)
Wed May 23, 2012, 07:33 AM May 2012

Revenge of the Weeds: developing resistance to multiple herbicides [View all]

A fairly long, detailed article in The Scientist.

http://the-scientist.com/2012/05/20/revenge-of-the-weeds/

It’s a story suited for a Hollywood horror film, yet it’s also a tenet of evolutionary biology. Introduce a toxin to a system, and you inevitably select for resistant survivors. These few individuals gain a reproductive advantage and multiply; sometimes they can’t be stopped with even the most potent chemicals. For years, this general plot line made headlines in the fields of antibiotic resistance and cancer research. More recently, plants have become a common protagonist. Weeds around the world are developing resistance to glyphosate—one of the most common herbicides on the market—and like bacteria and tumor cells, many plants can also withstand multiple other toxins, each with unique molecular targets.

long snip>

If the situation wasn’t bad enough already, it appears to be snowballing. Weeds in nine different countries have independently developed resistance to multiple modes of action. Some stubborn survivors can now survive most of the chemicals used by farmers, and the infestations are spreading.

Last year, for example, farmers in Iowa reported infestations of waterhemp in their corn and soy fields. The weed has now encroached on 500 acres, and continues to survive treatments of glyphosate and six additional chemicals. The case is a rare example of a weed developing resistance to three chemical classes, each with a unique molecular target. Even more impressive, a biotype of Rigid Ryegrass growing in Victoria, Australia, is now resistant to four chemical classes. Only about 10 acres are impacted so far, but the weeds are predicted to spread.

Despite the seemingly small odds of a plant evolving resistance to multiple herbicides, the dramatic increase in glyphosate-resistant weeds, which now infest more than 17 million acres nationwide, has made this possibility exponentially more likely. “We don’t need a single plant to undergo two unlikely adaptations—we just need one event to happen in a biotype that already has glyphosate resistance,” says Mortensen.

snip>

4 replies = new reply since forum marked as read
Highlight: NoneDon't highlight anything 5 newestHighlight 5 most recent replies
Latest Discussions»Issue Forums»Environment & Energy»Revenge of the Weeds: dev...»Reply #0