http://uwnews.org/article.asp?articleID=40714April 10, 2008 | Science | Technology | Environment
Popcorn-ball design doubles efficiency of dye-sensitized solar cells
Hannah Hickey hickeyh@u.washington.edu
A new approach is able to create a dramatic improvement in cheap solar cells now being developed in laboratories.
By using a popcorn-ball design -- tiny kernels clumped into much larger porous spheres -- researchers at the University of Washington are able to manipulate light and more than double the efficiency of converting solar energy to electricity. The findings will be presented today in New Orleans at the national meeting of the American Chemical Society.
"We think this can lead to a significant breakthrough in dye-sensitized solar cells," said lead author Guozhong Cao, a UW professor of materials science and engineering.
Dye-sensitized solar cells, first popularized in a scientific article in 1991, are more flexible, easier to manufacture and cheaper than existing solar technologies. Researchers have tried various rough surfaces and achieved higher and higher efficiencies. Current lab prototypes can convert just over one tenth of the incoming sun's energy into electricity. This is about half as efficient as the commercial, silicon-based cells used in rooftop panels and calculators.
The UW researchers did not attempt to maximize the overall efficiency of a dye-sensitized solar cell to match or beat these previous records. Instead, they focused on developing new approaches and compared the performance of a homogeneous rough surface with a clumping design. One of the main quandaries in making an efficient solar cell is the size of the grains. Smaller grains have bigger surface area per volume, and thus absorb more rays. But bigger clumps, closer to the wavelength of visible light, cause light to ricochet within the thin light-absorbing surface so it has a higher chance of being absorbed.
...
