Democratic Underground Latest Greatest Lobby Journals Search Options Help Login
Google

Berkeley Lab Researchers Develop Inexpensive Technique for Making High Quality Nanowire Solar Cells

Printer-friendly format Printer-friendly format
Printer-friendly format Email this thread to a friend
Printer-friendly format Bookmark this thread
This topic is archived.
Home » Discuss » Topic Forums » Environment/Energy Donate to DU
 
OKIsItJustMe Donating Member (1000+ posts) Send PM | Profile | Ignore Wed Aug-31-11 02:35 PM
Original message
Berkeley Lab Researchers Develop Inexpensive Technique for Making High Quality Nanowire Solar Cells
http://newscenter.lbl.gov/news-releases/2011/08/31/down-to-the-wire-berkeley-lab-researchers-develop-inexpensive-technique-for-making-high-quality-nanowire-solar-cells/

Down to the Wire: Berkeley Lab Researchers Develop Inexpensive Technique for Making High Quality Nanowire Solar Cells

August 31, 2011

Lynn Yarris 510-486-5375 lcyarris@lbl.gov

Solar or photovoltaic cells represent one of the best possible technologies for providing an absolutely clean and virtually inexhaustible source of energy to power our civilization. However, for this dream to be realized, solar cells need to be made from inexpensive elements using low-cost, less energy-intensive processing chemistry, and they need to efficiently and cost-competitively convert sunlight into electricity. A team of researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) has now demonstrated two out of three of these requirements with a promising start on the third.

Peidong Yang, a chemist with Berkeley Lab’s Materials Sciences Division, led the development of a solution-based technique for fabricating core/shell nanowire solar cells using the semiconductors cadmium sulfide for the core and copper sulfide for the shell. These inexpensive and easy-to-make nanowire solar cells boasted open-circuit voltage and fill factor values superior to conventional planar solar cells. Together, the open-circuit voltage and fill factor determine the maximum energy that a solar cell can produce. In addition, the new nanowires also demonstrated an energy conversion efficiency of 5.4-percent, which is comparable to planar solar cells.

“This is the first time a solution based cation-exchange chemistry technique has been used for the production of high quality single-crystalline cadmium sulfide/copper sulfide core/shell nanowires,” Yang says. “Our achievement, together with the increased light absorption we have previously demonstrated in nanowire arrays through light trapping, indicates that core/shell nanowires are truly promising for future solar cell technology.”

Yang, who holds a joint appointment with the University of California (UC) Berkeley, is the corresponding author of a paper reporting this research that appears in the journal Nature Nanotechnology. The paper is titled “Solution-processed core–shell nanowires for efficient photovoltaic cells.” Co-authoring this paper with Yang were Jinyao Tang, Ziyang Huo, Sarah Brittman and Hanwei Gao.


http://dx.doi.org/10.1038/nnano.2011.139
Printer Friendly | Permalink |  | Top

Home » Discuss » Topic Forums » Environment/Energy Donate to DU

Powered by DCForum+ Version 1.1 Copyright 1997-2002 DCScripts.com
Software has been extensively modified by the DU administrators


Important Notices: By participating on this discussion board, visitors agree to abide by the rules outlined on our Rules page. Messages posted on the Democratic Underground Discussion Forums are the opinions of the individuals who post them, and do not necessarily represent the opinions of Democratic Underground, LLC.

Home  |  Discussion Forums  |  Journals |  Store  |  Donate

About DU  |  Contact Us  |  Privacy Policy

Got a message for Democratic Underground? Click here to send us a message.

© 2001 - 2011 Democratic Underground, LLC