Welcome to DU! The truly grassroots left-of-center political community where regular people, not algorithms, drive the discussions and set the standards. Join the community: Create a free account Support DU (and get rid of ads!): Become a Star Member Latest Breaking News General Discussion The DU Lounge All Forums Issue Forums Culture Forums Alliance Forums Region Forums Support Forums Help & Search

Environment & Energy

Showing Original Post only (View all)

NNadir

(33,541 posts)
Sun Aug 14, 2016, 03:13 PM Aug 2016

Wind Energy Is "Renewable Energy?" Really? [View all]

All of humanity's efforts to address climate change have failed, and failed dramatically. I noted this much recently in this space in the latest of a depressing series of references to the Mauna Loa Carbon Dioxide Observatory of what is developing into the absolute worst year for new accumulations of the dangerous fossil fuel waste carbon dioxide in the planetary atmosphere, 2016:

July 31, 2016: Mauna Loa carbon dioxide levels 5.04 ppm higher than one year ago.

Predictably, this thread resulted in little commentary, since we really, really, really, really, really want to tell ourselves that we're doing something about climate change because we're investing heavily in so called "renewable energy," spending about a trillion bucks or so every five years on the solar and wind industries. It has been a useless exercise in futility. It has not worked; it is not working and it will not work.

Every five years the OECD publishes the World Energy Outlook, the most recent version being that of 2015, with the 2016 edition due for publication in the coming November.

Regrettably the document is behind a fire wall, but if one goes to a good university library like the one I'm in right now, one may be able to open the document and refer to table 2.1 on page 57 to see that the world's largest, by far, source of climate change gas free energy was nuclear energy, which produced in 646 million tons oil equivalent (MTOE) in 2013, which translates into 27.05 exajoules, down slightly from 2000, when it produced 676 MTOE, translating to 28.03 exajoules.

World Energy Demand in 2013 was 567 exajoules according to the document. Despite all the prattling one hears about "energy conservation," the demand is certainly much higher in 2016 than it was in 2013.

In 2013, Japan's nuclear facilities were shut on the grounds that people needed to determine whether they were "safe" after Fukushima, and replaced them with dangerous fossil fuel generated electricity generating plants that kill people not only in accident situations, but do so whenever they are turned on.

Dangerous fossil fuel related air pollution kills about 1/2 of the 7 million people who die each year from air pollution, with the other half coming from the use of biofuels, generally in poor countries that still rely on so called "renewable energy," chiefly biomass, because unlike us, they have limited access to dangerous coal, dangerous petroleum, and dangerous natural gas, and of course, nuclear energy. These people live short, miserable lives of dire poverty, and we couldn't care less about them. We've got trillions of dollars to spend on so called "renewable energy" but are unwilling to spend a dime to provide even moderately safe latrines for the 1.3 billion people who lack any kind of access to improved sanitation facilities.

Only the latter form of energy can be called "safe" even though there a loud and cacophonous crowd of scientific illiterates who think nuclear energy is unsafe, despite the fact that it hasn't, in its entire commercial history, killed as many people as will die today from air pollution, about 19,000 people.

Speaking of biofuels, the 2015 OECD "World Energy Outlook" document indicates that biofuels supplied about 1376 MTOE, or 57.61 exajoules of energy. The table has a footnote stating

* Includes the traditional use of solid biomass and modern use of bioenergy.


The "traditional use of solid biomass" is chiefly by the billions of people on this planet who live in desperate poverty, unimaginable poverty to almost everyone who can afford, say, a computer. These people live short, miserable lives of dire poverty, and we couldn't care less about them. We've got trillions of dollars to spend on so called "renewable energy" but are unwilling to spend a dime to provide even moderately safe latrines for the 1.3 billion people who lack any kind of access to improved sanitation facilities.

On occasion one may hear a complete fool with a very poor education who will argue that biomass is a larger "climate change gas free" form of energy but this is just stupid. "Traditional biomass" is responsible for huge amounts of deforestation, and there is a huge debate as to whether "modern use of bioenergy" is carbon negative, carbon neutral, or even a source of carbon dioxide. If it is, in fact, carbon negative, it is only slightly so, since it depends of the collection of diffuse biomass using petroleum fueled devices like tractors and trucks, vast networks of pumps, access to huge amounts of fixed nitrogen manufactured using either dangerous natural gas (in the West) or dangerous coal (in China and other countries) and as in the case of South East Asia (chiefly Indonesia and Malaysia), the destruction of rain forests, to have palm oil plantations for biodiesel, and the destruction of Rain forests, and the world's largest wetland, the Pantanal, in South America to grow ethanol, and the destruction of the Mississippi delta to grow corn for ethanol in the United States.

Biomass is not carbon neutral.

But what about wind and solar? They're wonderful aren't they? They are lumped under "other renewables" in Table 2.1 in the OECD WEO. They produced 161 MTOE, or about 6.74 exajoules. "Other renewables" includes solar, wind, geothermal, tidal, blah, blah, blah, ad infinitim.

We have bet the planetary atmosphere on these technologies and all of humanity, and in fact, all living things, have lost the bet, as the figures at Mauna Loa demonstrate emphatically.

Of the 6.74 exajoules produced by "other renewables," the total figure is dominated all most certainly by wind energy. The solar energy industry is clearly even more useless if one looks. According to the 2013 "Technology Roadmap" for wind energy(also published by the OECD), in 2012, after the investment of close to a trillion dollars in the industry, the wind industry produced 575 TWh of electricity, which translates into 1.89 exajoules of energy.

It may have doubled since then, and of course, as all the fools buying into this disastrous bet will tell you, it's growing rapidly, "exponentially" as they've been saying for the last 20 or 30 years while the atmosphere has been collapsing at ever accelerating rates.

And it's "sustainable." Right?

Um, um, um....

A recent paper on the subject of the treatment of acid mine runoff brings, into its opening paragraphs a, um, remark on how, exactly, "renewable" the wind industry is, referring to its own mining requirements. Here's a link to the paper, which is in my favorite scientific journal, Environmental Science and Technology. Recovery of Rare Earth Elements and Yttrium from Passive-Remediation Systems of Acid Mine Drainage (Ayora et al, Environ. Sci. Technol., 2016, 50 (15), pp 8255–8262) The paper is in the current issue as of this writing (August 14, 2016.)

Here's the opening two paragraphs excerpted:

Rare earth elements (REE), together with yttrium (REY), are essential raw materials for modern technological developments. Their most important uses include the manufacturing of permanent magnets for wind turbines, alloys for rechargeable batteries and jet engines, and phosphor light-emitting compounds for plasma, liquid crystal, or light-emitting diodes. In 2011, global demand was 105 kt of REY oxides, and it is expected to grow to 160 kt by 2016.1 In general, global consumption of REY is expected to increase at a compound annual growth rate in excess of 5% from 2014 through 2020.2This increasing demand is particularly evident for elements used in wind energy and electric vehicles, such as Dy and Nd .In the absence of drastic changes in the present-day technologies of reuse and recycling, increases of 700% and 2600% for Nd and Dy, respectively, are expected over the next25 years.3

Most mined REY deposits are located in carbonatites and other alkaline magmatic intrusive rocks. Additional resources of REY are adsorbed on clay deposits from the weathering and reworking of original primary igneous rocks. China dominates worldwide REY production. The Bayan Obo super large deposit currently accounts for approximately 90% of the REE production, with clays accounting for 6?7%.4 In response tothe increasing global demand and the mining dominance ofChina, alternative sources of REY have become a necessity for other countries. Recycling in-use stocks can be an alternative source, especially for the “big four,” i.e., La, Ce, Nd, and Pr. The availability of less-abundant REE, however, continues to be achallenge.5


The point of the paper is to argue that if we someday treat acid runoff from some historical and current mining operations, not a good bet, we may be able to get a little more "rare earth" (lanthanide) elements than we've identified in current reserves.

Growth in mining for dysprosium (Dy) will require a scale up of 2600%. That's, um, renewable, sustainable? (Dysprosium is a low level constituent of lanthanide (rare earth) ores.)

And it's even worse than that, really, for other materials, as noted in a recent paper in Nature Geoscience, to wit:

Metals for a low-carbon society (Olivier Vidal, Bruno Goffé and Nicholas Arndt, Nature Geoscience 6, 894–896 (2013). The source references for the calculations are found in the supplementary information for this paper.) An excerpt from the text:

However, this transition (to so called "renewable energy&quot will also cause much additional global demand for raw materials: for an equivalent installed capacity, solar and wind facilities require up to 15 times more concrete, 90 times more aluminium, and 50 times more iron, copper and glass than fossil fuels or nuclear energy (Supplementary Fig. 1). Yet, current production of wind and solar energy meets only about 1% of global demand, and hydroelectricity meets about 7% (ref. 2).


I had some remarks on this requirement elsewhere: Sustaining the Wind Part 1 – Is So Called “Renewable Energy” the Same as “Sustainable Energy?”

(I never did get around to publishing the last two parts of that series...perhaps I should...never mind...it would do no good, as the figures for carbon dioxide accumulations demonstrate, unambiguously, that it is too late to defeat the fear and ignorance that have won the day.)

So is the tiny and thus far useless wind industry really, "renewable" and "sustainable?"

That depends on whether one can make the case that access to dysprosium is any different than access to dangerous natural gas, or coal, or oil. And let's not forget that the energy/mass ratio of wind energy is much lower than any of the three dangerous fossil fuels.

We are lying to ourselves, and the result is written clearly, and in unmistakable terms where no one can miss it, in the planetary atmosphere.

It's hot as hell today here in New Jersey, and I have to go.

Have a nice Sunday evening.


9 replies = new reply since forum marked as read
Highlight: NoneDon't highlight anything 5 newestHighlight 5 most recent replies
Latest Discussions»Issue Forums»Environment & Energy»Wind Energy Is "Rene...»Reply #0